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Introduction

Singularities appear frequently in the geometric spaces relevant for
physics, and so it behooves us to understand them from both a
mathematical and physical perspective

Non-crepantly resolvable singularities in F-theory indicate the presence
of localized uncharged massless matter states [Braun, Morrison ’14] [Braun,

Collinucci, Valandro ’14] [Morrison, Park, Taylor ’16] [Arras, Grassi, Weigand ’16]

Goal: investigate what happens when we introduce abelian gauge
factors to F-theory models with non-crepant singularities

Brief advertisement of recent proposal of heuristic method to read off
U(1) charges without carrying out resolution, similar to Katz–Vafa
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F-theory overview
Elliptically fibered Calabi–Yau
n-fold X:

▶ Torus over each point in
base B, π : X → B

▶ Has a section, σ : B → X
s.t. π ◦ σ = IdB

▶ Complex structure τ encodes
Type IIB axiodilaton

Described by Weierstrass model: hypersurface

y2 = x3 + fxz4 + gz6

in ambient P2,3,1
[x:y:z], where f, g are sections of −4KB,−6KB

Gauge algebras and matter:

▶ Codimension-one singularities (7-branes) ←→ nonabelian gauge
algebras

▶ Additional rational sections ←→ u(1) gauge algebras
▶ Codimension-two singularities ←→ massless matter
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Singularities

A singular CY X can always be resolved: ρ : X̃ → X such that X̃ is
smooth

X̃ and X agree on dense open sets, but not on the exceptional locus

▶ Big resolution: exceptional locus contains divisors Ei

▶ Small resolution: exceptional locus contains no divisors

KX̃ = KX +
∑

i aiEi, ai “discrepancies”

▶ ai ≥ 0: canonical singularity
▶ ai > 0: terminal singularity
▶ ai = 0: crepantly resolvable ⇒ X̃ is CY

F-theory: resolution of singular point in fiber introduces rk g
exceptional P1s

▶ Gauge fields: C3 = Ai ∧ [Ei] and wrapped M2-branes
▶ Localized matter: M2-branes wrapped on additional fibral curves C at

codimension two
▶ Mass along dual M-theory Coulomb branch: m0 ∼ vol(C)
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Non-crepant singularities
All non-crepantly resolvable singularities in an elliptically fibered CY
n-fold occur in codimension-two or higher

In particular, we focus on isolated Q-factorial terminal singularities in
codimension two of elliptic CY threefolds X3

▶ Every Weil divisor is also Q-Cartier, i.e., there exists some r ∈ Z so
that rD is Cartier

▶ No small resolution as well as no crepant big resolution

Physical interpretation: KK zero mode remains massless everywhere
in the M-theory Coulomb branch ⇒ localized uncharged matter in
codimension two [Arras, Grassi, Weigand ’16]

Number of uncharged massless hypermultiplets counted by Milnor
number mP :

CxDef(X3) =

(
1

2
b3(X3)− 1− 1

2

∑
P

mP

)
︸ ︷︷ ︸

def. independent of sing.

+
∑
P

mP︸ ︷︷ ︸
def. of sing.

Andrew P. Turner (Penn) Terminal Singularities and U(1)s String Pheno (July 7) 5



Non-crepant singularities
All non-crepantly resolvable singularities in an elliptically fibered CY
n-fold occur in codimension-two or higher

In particular, we focus on isolated Q-factorial terminal singularities in
codimension two of elliptic CY threefolds X3

▶ Every Weil divisor is also Q-Cartier, i.e., there exists some r ∈ Z so
that rD is Cartier

▶ No small resolution as well as no crepant big resolution

Physical interpretation: KK zero mode remains massless everywhere
in the M-theory Coulomb branch ⇒ localized uncharged matter in
codimension two [Arras, Grassi, Weigand ’16]

Number of uncharged massless hypermultiplets counted by Milnor
number mP :

CxDef(X3) =

(
1

2
b3(X3)− 1− 1

2

∑
P

mP

)
︸ ︷︷ ︸

def. independent of sing.

+
∑
P

mP︸ ︷︷ ︸
def. of sing.

Andrew P. Turner (Penn) Terminal Singularities and U(1)s String Pheno (July 7) 5



Non-crepant singularities
All non-crepantly resolvable singularities in an elliptically fibered CY
n-fold occur in codimension-two or higher

In particular, we focus on isolated Q-factorial terminal singularities in
codimension two of elliptic CY threefolds X3

▶ Every Weil divisor is also Q-Cartier, i.e., there exists some r ∈ Z so
that rD is Cartier

▶ No small resolution as well as no crepant big resolution

Physical interpretation: KK zero mode remains massless everywhere
in the M-theory Coulomb branch ⇒ localized uncharged matter in
codimension two [Arras, Grassi, Weigand ’16]

Number of uncharged massless hypermultiplets counted by Milnor
number mP :

CxDef(X3) =

(
1

2
b3(X3)− 1− 1

2

∑
P

mP

)
︸ ︷︷ ︸

def. independent of sing.

+
∑
P

mP︸ ︷︷ ︸
def. of sing.

Andrew P. Turner (Penn) Terminal Singularities and U(1)s String Pheno (July 7) 5



Non-crepant singularities
All non-crepantly resolvable singularities in an elliptically fibered CY
n-fold occur in codimension-two or higher

In particular, we focus on isolated Q-factorial terminal singularities in
codimension two of elliptic CY threefolds X3

▶ Every Weil divisor is also Q-Cartier, i.e., there exists some r ∈ Z so
that rD is Cartier

▶ No small resolution as well as no crepant big resolution

Physical interpretation: KK zero mode remains massless everywhere
in the M-theory Coulomb branch ⇒ localized uncharged matter in
codimension two [Arras, Grassi, Weigand ’16]

Number of uncharged massless hypermultiplets counted by Milnor
number mP :

CxDef(X3) =

(
1

2
b3(X3)− 1− 1

2

∑
P

mP

)
︸ ︷︷ ︸

def. independent of sing.

+
∑
P

mP︸ ︷︷ ︸
def. of sing.

Andrew P. Turner (Penn) Terminal Singularities and U(1)s String Pheno (July 7) 5



Examples

Many examples discussed in literature:

I1 → I2 [Grassi, Morrison ’00] [Braun, Collinucci, Valandro ’14] [Martucci, Weigand ’15]

Zk Weierstrass models [Braun, Morrison ’14] [Morrison, Taylor ’14] [Anderson,

Etxebarria, Grimm, Keitel ’14] [Klevers, Mayorga Peña, Oehlmann, Piragua, Reuter ’14]

[Mayrhofer, Palti, Till, Weigand ’14] [Cvetič, Donagi, Klevers, Piragua, Poretschkin ’15]

[Cvetič, Grassi, Poretschkin ’16] [Braun, Cvetič, Dongai, Poretschkin ’17] . . .

II→ III or IV [Arras, Grassi, Weigand ’16]

su(2) III→ I∗0 family [Arras, Grassi, Weigand ’16]

sp(k) Inonsplit2k+1 → I2k+2 family [Grassi, Weigand ’18]
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[Cvetič, Grassi, Poretschkin ’16] [Braun, Cvetič, Dongai, Poretschkin ’17] . . .
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Example [Arras, Grassi, Weigand ’16]

Type III model with ord(g) = 4

Gauge algebra g = su(2)

y2 + a1,2σ
2xyz + a3,2σ

2yz3 = x3 + a2,3σ
3x2z2 + a4,1σxz

4 + a6,4σ
4z6

Q-factorial terminal I∗0 at {σ = a4,1 = 0} supporting 2× 2+ 1

Andrew P. Turner (Penn) Terminal Singularities and U(1)s String Pheno (July 7) 7
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Example

[Arras, Grassi, Weigand ’16]

Type III model with ord(g) = 4 and u(1) factor

Gauge algebra g = su(2)⊕ u(1) [Küntzler, Schäfer-Nameki ’14]

y2s+ b̃0,1σx
2y + b̃1,2σ

2wxys+ b̃2,2σ
2w2ys2

= c̃0,4σ
4w4s3 + c̃1,1σw

3xs2 + c̃2,3σ
3w2x2s+ c̃3wx

3

Q-factorial terminal I∗0 at {σ = c̃1,1 = 0} supporting 2× 20 + 10

Crepantly resolvable I∗0 at {σ = c̃3 = 0} supporting 2× 21 + 12
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Reading off U(1) charges [Raghuram, APT ’21]

Consider a model with gauge algebra g⊕ u(1), with g simply laced

Codimension-one: singularity types Gi at loci {σi = 0}
Codimension-two: singularity type enhances Gi1 × · · · ×GiN → H

Codimension-one orders of vanishing:

ord1(ẑ) = 0 ,
(
ord1(x̂), ord1(ŷ), ord1(3x̂

2 + fẑ4)
)
= τ⃗G(ν)

Codimension-two orders of vanishing:

ord2(ẑ) =
1

2

(∏
i dGi

dH
q2 +

∑
i

TGi(νi)− TH(µ)

)
(
ord2(x̂), ord2(ŷ), ord2(3x̂

2 + fẑ4)
)
= (2, 3, 4)× ord2(ẑ) + τ⃗H(µ)

q: u(1) charge
[x̂ : ŷ : ẑ]: section components
νi, µ: Integers denoting the components of the resolved fiber hit by the generating section
τ⃗G(ν): Triplet of integers dependent on G and ν
dG: Number of elements in the center of G
TG(ν) = (C−1

G )νν : νth diagonal entry of inverse Cartan matrix of G

Andrew P. Turner (Penn) Terminal Singularities and U(1)s String Pheno (July 7) 8
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Codimension-one orders of vanishing:

ord1(ẑ) = 0 ,
(
ord1(x̂), ord1(ŷ), ord1(3x̂

2 + fẑ4)
)
= τ⃗G(ν)

Codimension-two orders of vanishing:

ord2(ẑ) =
1

2

(∏
i dGi

dH
q2 +

∑
i

TGi(νi)− TH(µ)

)
(
ord2(x̂), ord2(ŷ), ord2(3x̂

2 + fẑ4)
)
= (2, 3, 4)× ord2(ẑ) + τ⃗H(µ)

q: u(1) charge
[x̂ : ŷ : ẑ]: section components
νi, µ: Integers denoting the components of the resolved fiber hit by the generating section
τ⃗G(ν): Triplet of integers dependent on G and ν
dG: Number of elements in the center of G
TG(ν) = (C−1

G )νν : νth diagonal entry of inverse Cartan matrix of G
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Conclusions

The introduction of a U(1) factor to a model with Q-factorial
terminal singularities can give charge to previously uncharged
localized massless hypermultiplets, changing the nature of the
singularity to allow for a crepant resolution

Can this be interpreted as an “enhancement” of discrete symmetries
(possibly Z1) under which the localized multiplets are charged?

What about models that are forced to give nonzero U(1) charge to all
nonabelian-charged hypermultiplets?
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Euler characteristic

1

2
χtop = KaDef(X)− CxDef(X) +

1

2
mP

Compute:

Resolve all codimension-one singularities

Sum over all fibers:

χtop(X3) =
∑
i

χtop(XPi) ·Bi + χtop(XΣ1) · (2− 2g(Σ1)−
∑
i

Bi)

+ 2− 2g(Σ0) + 3C +
∑
i

ϵiBi

with

C = (−4KB − ord(f))(−6KB − ord(g))−
∑
i

µPi(f, g)Bi
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